skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "King, Alistair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Securing the Internet’s inter-domain routing system against illicit prefix advertisements by third-party networks remains a great concern for the research, standardization, and operator communities. After many unsuccessful attempts to deploy additional security mechanisms for BGP, we now witness increasing adoption of the RPKI (Resource Public Key Infrastructure). Backed by strong cryptography, the RPKI allows network operators to register their BGP prefixes together with the legitimate Autonomous System (AS) number that may originate them via BGP. Recent research shows an encouraging trend: an increasing number of networks around the globe start to register their prefixes in the RPKI. While encouraging, the actual benefit of registering prefixes in the RPKI eventually depends on whether transit providers in the Internet enforce the RPKI’s content, i.e., configure their routers to validate prefix announcements and filter invalid BGP announcements. In this work, we present a broad empirical study tackling the question: To what degree does registration in the RPKI protect a network from illicit announcements of their prefixes, such as prefix hijacks? To this end, we first present a longitudinal study of filtering behavior of transit providers in the Internet, and second we carry out a detailed study of the visibility of legitimate and illegitimate prefix announcements in the global routing table, contrasting prefixes registered in the RPKI with those not registered. We find that an increasing number of transit and access providers indeed do enforce RPKI filtering, which translates to a direct benefit for the networks using the RPKI in the case of illicit announcements of their address space. Our findings bode well for further RPKI adoption and for increasing routing security in the Internet. 
    more » « less
  2. In this article, we study the political use of denial-of-service (DoS) attacks, a particular form of cyberattack that disables web services by flooding them with high levels of data traffic. We argue that websites in nondemocratic regimes should be especially prone to this type of attack, particularly around political focal points such as elections. This is due to two mechanisms: governments employ DoS attacks to censor regime-threatening information, while at the same time, activists use DoS attacks as a tool to publicly undermine the government’s authority. We analyze these mechanisms by relying on measurements of DoS attacks based on large-scale Internet traffic data. Our results show that in authoritarian countries, elections indeed increase the number of DoS attacks. However, these attacks do not seem to be directed primarily against the country itself but rather against other states that serve as hosts for news websites from this country. 
    more » « less